Фрагменты ежегодника БСЭ позаимствованы с сайта http://epizodsspace.narod.ru

Наши благодарности.

Перейти к БСЭ 1974

БСЭ 1975

АМС "Марс". Автоматические межпланетные станции "Марс-4", "Марс-5", "Марс-6" и "Марс-7", запущенные в июле - августе 1973 г. (см. Ежегодник БСЭ 1974 г.), провели в 1974 г. комплексное исследование планеты Марс. Станция "Марс-4" фотографировала Марс с пролетной траектории. Искусственный спутник Марса (ИСМ) станция "Марс-5" передала на Землю новые сведения о планете и окружающем ее пространстве; с орбиты спутника получены высококачественные фотографии марсианской поверхности, в т. ч. цветные. Спускаемый аппарат (СА) станции "Марс-6" совершил посадку на планету, впервые передав на Землю данные о параметрах марсианской атмосферы, полученные во время снижения. АМС "Марс-6" и "Марс-7" исследовали космическое пространство с гелиоцентрической орбиты.

Схема полета АМС "Марс-4", "Марс-5", "Марс-6" и "Марс-7" отличалась от схемы полета предыдущих станций серии "Марс" - "Марс-2" и "Марс-3". Скорость, которую необходимо сообщить космическому аппарату, чтобы он достиг Марса, и, соответственно, выводимый на межпланетную траекторию полезный вес меняются в зависимости от момента старта. Взаимное расположение Земли и Марса в 1973 г. требовало, чтобы скорость полета станции была более высокой, чем в 1971 г., когда к Марсу стартовали советские станции "Марс-2" и "Марс-3", а также американский аппарат "Маринер-9". Вес полезной нагрузки при использовании той же ракеты-носителя получался меньше. Поэтому для АМС, стартовавших в 1973 г., была принята иная схема полета. Задачи доставки СА и создания ИСМ возлагались на станции разного типа. Станции одного типа предназначались для перевода на орбиту ИСМ и не имели в своем составе СА, вместо которого на борту размещались научные приборы для исследования планеты и космического пространства с орбиты искусственного спутника, а также запас топлива, требующийся для перевода станций на эту орбиту и коррекции последней в случае необходимости. Задача станций другого типа состояла в доставке к Марсу СА (экономия веса достигалась за счет отказа от торможения орбитального аппарата (ОА), что обусловило уменьшение запасов топлива на борту станции). Вместе с тем на этих станциях размещался комплекс научных приборов в основном для разносторонних исследований межпланетного пространства.

Приблизительно за двое суток до прилета каждая станция входила в сферу действия Марса. За определенное до момента наибольшего сближения с планетой время положение АМС относительно Марса измерялось с помощью специального оптико-электронного прибора, установленного на борту каждой станции. Результаты измерений отрабатывались бортовой цифровой вычислительной машиной (БЦВМ), которая рассчитывала параметры последней коррекции и управляла ее исполнением. Дальнейшие этапы полета станций были различны. АМС "Марс-4" и "Марс-5" двигались по гиперболической траектории сближения с планетой. В районе перицентра двигательная установка сообщила АМС "Марс-5" необходимый тормозной импульс и станция вышла на орбиту вокруг Марса, став ИСМ. "Марс-4", проведя исследование и фотографирование с пролетной траектории, продолжала полет но гелиоцентрической орбите, не переходя на ареоцентрическую вследствие нарушения в работе одной из бортовых систем. От "Марса-6" и "Марса-7" после выполнения последней коррекции были отделены спускаемые аппараты, а сами станции совершили пролет мимо Марса. Отделенный на расстоянии ~46 000 км от планеты СА станции "Марс-6" получил от своей двигательной установки импульс для выхода на "попадающую" траекторию, которая обеспечивала посадку в заданном районе. Приблизительно через 3,5 часа после разделения спускаемый аппарат вошел в атмосферу Марса со скоростью 5600 м/сек вх ~100 км, Q ВХ = - 11,7 + 1,5°). После аэродинамического торможения по достижении скорости ~ 600 м/сек была введена в действие парашютная система (расчетная высота введения ПС - Н = 5-10 км). СА достиг поверхности Марса в районе с номинальными координатами. 23,9° ю. ш. и 19,5° з. д. По номенклатуре Международного Астрономического Союза эта область носит название Pyrrhae Region. Информация с СА во время его аэродинамического торможения и спуска на парашюте ретранслировалась через ОА на Землю. В непосредственной близости от поверхности радиосвязь с СА прекратилась. Весь участок спуска - от входа в атмосферу и аэродинамического торможения до снижения на парашюте включительно - проходил в соответствии с программой и продолжался 5,2 мин. СА станции "Марс-7" не был переведен на траекторию попадания.

АМС "Марс-4" и "Марс-5" конструктивно аналогичны и представляют собой орбитальные аппараты, в которых находятся системы и агрегаты, обеспечивающие работу станций на всех этапах полета. Здесь размещены приборная часть, двигательная установка, панели солнечных батарей, параболическая остронаправленная и малонаправленные антенны, радиаторы холодного и горячего контуров системы обеспечения теплового режима. Основным конструктивным элементом, к которому крепятся агрегаты, является блок топливных баков двигательной установки. Научная аппаратура устанавливается в верхней части блока баков. На станциях "Марс-6" и "Марс-7" (рис. 5, 6), в отличие от "Mapса-4" и "Марса-5", научная аппаратура расположена на коническом переходном элементе, соединяющем приборный отсек и блок баков; на верхней части блока размещается СА. В спускаемый аппарат входят автоматическая марсианская станция, приборно-парашютный контейнер и аэродинамический тормозной конус. В верхней части аппарата расположена соединительная рама, стыкующая СА с ОА. На раме размещены двигательная установка для увода СА и агрегаты ряда систем.

Приборно-парашютный контейнер установлен непосредственно на верхнюю часть марсианской станции. В нем размещены вытяжной и основной парашюты, двигатель ввода вытяжного парашюта и тормозная двигательная установка мягкой посадки, антенны радиовысотомера, антенны связи с ОА и часть научной аппаратуры.

Автоматическая марсианская станция представляет собой герметичный приборный отсек, в котором находятся блоки бортовых систем (радиотелеметрического комплекса, систем управления, систем терморегулирования, энергопитания) и блоки научных приборов. Для поглощения энергии, возникающей при соприкосновении с поверхностью планеты, марсианская станция оборудована специальной амортизационной системой. Снаружи установлены научные приборы с механизмами их выноса, антенны радиокомплекса, система приведения станции в рабочее положение после посадки. К нижней части станции крепится аэродинамический тормозной конус, служащий для гашения скорости при входе в атмосферу и защиты аппарата от аэродинамических и тепловых нагрузок при торможении. На кольцевом штангоуте основания конуса установлены двигатели закрутки аппарата для его стабилизации до входа в атмосферу и двигатели останова закрутки при входе в атмосферу. Необходимая последовательность работы систем СА обеспечивается программно-временным устройством.

Тепловой режим автоматических станций обеспечивается комбинированной системой терморегулирования, состоящей из активных и пассивных средств. Активная часть представляет собой двухконтурную газовую циркуляционную систему, включающую контур нагревания с вынесенным наружу радиационным радиатором-нагревателем и контур охлаждения с радиационным радиатором-охладителем. Теплоносителем служит газ орбитального отсека, циркулирующий под действием вентиляторов.

В пассивные средства входят экрановакуумная теплоизоляция, специальные покрытия, конструкционные материалы. Характеристики системы терморегулирования СА были выбраны таким образом, чтобы в районе Марса, с учетом уменьшения к концу полета теплового потока Солнца, внутри аппарата сохранялась бы требуемая температура.

В аппаратуру бортового радиотелеметрического комплекса орбитального аппарата входят антенно-фидерная система, приемные и передающие устройства, приборы автоматики, программно-временное устройство, приборы фототелевизионной и телеметрической систем и аппаратура для приема информации с СА. С помощью радиокомплекса на всех этапах полета производятся измерения с целью уточнения местоположения станции и расчета параметров, необходимых для коррекции ее траектории.

Управление станциями "Марс" осуществляется как с помощью радиокоманд, принятых с земли, так и посредством команд, выработанных программно-временным устройством. В течение полета ведется периодическая запись научной и служебной телеметрической информации на запоминающее устройство, с последующей передачей данных на Землю в сеансах связи. После входа СА в плотные слои атмосферы и начала работы его основной радиолинии на ОА велись прием и запись на видеомагнитофоны всей информации, получаемой на участке парашютирования.

Антенно-фидерная система каждого орбитального отсека АМС "Марс-4", "Марс-5", "Марс-6", "Марс-7" состоит из остронаправленной параболической антенны, трех малонаправленных антенн и двух антенн для приема информации с СА.

В систему управления ориентацией станции входят оптико-электронные приборы ориентации на Солнце, на Землю и звезду, датчики угловых скоростей и др. После выведения АМС на перелетную траекторию и отделения ее от последней ступени ракеты-носителя система ориентации приводит АМС в режим "постоянной солнечной ориентации". При этом панели солнечной батареи оказываются ориентированными на Солнце, а диаграммы излучения малонаправленных антенн - на Землю. Для выполнения коррекций траектории станция переводится в режим точной трехосной ориентации: в дополнение к ориентации на Солнце проводится поиск и захват звезды. На значительных от Земли расстояниях информация со станции передается через остронаправлениую параболическую антенну. Для этого станция переводится в режим постоянной солнечно-звездной ориентации, при котором панели солнечной батареи ориентированы на Солнце, а диаграмма излучения параболической антенны направлена на Землю.

Система автономного управления обеспечивает стабилизацию и программные пространственные развороты станции, определяет моменты включения и выключения двигательной установки для заданного изменения скорости движения станции и ориентацию направления тяги двигателя в пространстве. Ответственные задачи система управления и навигации решает на заключительном этапе полета. Для обеспечения определенного диапазона углов входа СА и точного выхода АМС на расчетные орбиты ИСМ необходимо с высокой точностью знать положение планеты в пространстве относительно станции. Это требует автономных измерений положения Марса в пространстве непосредственно со станции, находящейся вблизи от планеты. Для выполнения измерений станцию ориентируют относительно Солнца и звезды так, чтобы ось угломерного оптико-электронного прибора автономной навигации была направлена в район расчетного положения Марса. В заданный момент времени по величине отклонения фактического положения планеты от расчетного с помощью БЦВМ определяются величина и направление корректирующего импульса и производится коррекция траектории станции.

Система энергопитания станций построена по схеме "генератор-буферная батарея". В качестве генератора используется солнечная батарея на полупроводниковых фотопреобразователях. В качестве буферной батареи орбитального отсека использовалась аккумуляторная батарея с высокими энергетическими характеристиками. Это позволило увеличить продолжительность сеансов связи со станциями. Для питания бортовой аппаратуры СА на участке его посадки и работы на поверхности Марса предусмотрена аккумуляторная батарея, которая во время полета хранится в разряженном состоянии и заряжается за месяц до подлета к Марсу.

Управление бортовыми системами станции при выполнении всей программы полета осуществляет система общей автоматики. Данная система анализирует сигналы, необходимые для согласования работы систем станции, выполняет логическую обработку и преобразование их в исполнительные команды управления по заданной программе.

Двигательные установки станций состоят из жидкостного ракетного двигателя, гидравлической системы подачи компонентов топлива в двигатель, пневматической системы наддува топливных баков и системы управления двигательной установкой. Многорежимный жидкостной ракетный двигатель допускает многократное включение в условиях глубокого вакуума и невесомости.


Рис. 7. Схема спуска спускаемого аппарата АМС "Марс-6" в атмосфере Марса: 1 - отделение спускаемого аппарата; 2 - включение ракетного двигателя твердого топлива; 3 - программный разворот спускаемого аппарата; 4 - закрутка спускаемого аппарата; 5 - отделение фермы; 6 - прекращение закрутки, подача питания на радиовысотомер; 7 - начало введения парашютной системы, включение программно-временного механизма, подача питания на научную аппаратуру; 8 - введение основного парашюта, включение телеметрии, программно-временного устройства, радиокомплекса и научной аппаратуры; 9 - разрифовка парашюта, отделение аэродинамического конуса, включение радиовысотомера больших высот; 10 - расчековка крепления тормозной двигательной установки, перецепка парашютной системы; 11 - включение тормозной двигательной установки, конец передачи на орбитальный аппарат. Рис. 8. Кратеры на Марсе. Участок поверхности с широтой φ = -36° и долготой λ = 79° (координаты центра снимка). Размеры участка~ 120 X 120 км. Фотография получена с помощью АМС "Марс-5". Рис. 9. Участок поверхности с широтой φ = -33° и долготой λ = 35° (координаты центра снимка). Размеры участка ~ 750 X 750 км. В левом верхнем углу видно руслоподобное образование с системой притоков. Фотография получена с помощью АМС "Марс-5".

Схема спуска СА в атмосфере Марса показана на рис. 7. Вход СА в атмосферу планеты - ориентированный, с углом атаки, близким к нулю. Расчетные условия входа были: Н вх = ~ 100 км, V вх = 5600 м/сек, Q вх = -14+4°. Войдя в атмосферу, СА совершает баллистический спуск, осуществляя торможение при помощи лобового экрана (конуса). Устойчивость СА обеспечивается его внешней формой и центровкой. При достижении продольной перегрузки n х = -2 выдается команда на запуск пороховых двигателей останова закрутки около продольной оси; при достижении числа М =3,5 подается команда на вход вытяжного парашюта и вслед за ним основного зарифованного до 0,4 парашюта (Sполн =90 м 2 ); через 12 сек осуществляется разрифовка парашюта, еще через 2 сек отделение конуса и через 5 сек включение радиовысотомера; спустя некоторое время происходит перецепка и выход двигателя мягкой посадки. Общий вес системы при спуске на разрифованном парашюте Gca= 635 кг. Скорость снижения на парашюте к моменту включения двигательной установки мягкой посадки лежит в диапазоне V = 55-70 м/сек. Включение двигателя мягкой посадки происходит по команде радиодатчика малых высот непосредственно у поверхности. Расцепка двигателя с автоматической марсианской станцией происходит при скорости снижения Vpacц, = -6,5 + 1,7 м/сек.

Станция после расцепки совершает свободное падение с высоты Н расц = 1,5-7 м на поверхность планеты. Скорость соударения аппарата с поверхностью (по нормали к поверхности) не превышает 12 м/сек. Эта скорость гасится амортизационными устройствами.

При движении СА в атмосфере работала следующая аппаратура: 1) измеритель температуры и давления; 2) масс-спектрометр, в задачи которого входило определение химического состава атмосферы; 3) измеритель перегрузок и 4) радиовысотомер. Передача данных масс-спектрометра, за исключением некоторых вспомогательных параметров, согласно программе должна была иметь место только после посадки, и эти данные не были получены. Однако анализ одного из передававшихся вспомогательных параметров, чувствительного к составу атмосферы, показал, что в атмосфере присутствует значительное количество (35 + 10%) некоторого инертного газа , скорее всего аргона. Такое количество аргона может означать, что средняя скорость газовыделения на Марсе не отличается сильно от земной, и малая плотность марсианской атмосферы объясняется тем, что ее значительная часть сконденсирована в полярных шапках. Это в свою очередь поддерживает гипотезы, предполагающие, что в геологическом недавнем прошлом атмосфера была более плотной, чем сейчас, и на поверхности существовали открытые водоемы. Измерения давления, температуры и высоты на траектории спуска производились в диапазоне высот от 0 до 20 км. Кроме того, для оценки основных параметров атмосферы были привлечены данные, полученные с помощью акселерометров и измерений относительной допплеровской скорости по линии СА - ОА. Совместный анализ всех данных показал, что все они могут быть объяснены при следующих характеристиках атмосферы: давление у поверхности 6 мб; температура атмосферы у поверхности 230 °К; температурный градиент в тропопаузе 2,5 °К/км; высота тропопаузы 25-30 км; температура изотермической стратосферы 150-160 °К. Эта модель находится в близком согласии с представлениями об атмосфере Maрса, полученными ранее посредством анализа радиационных характеристик планеты. Давления в районе Pyrrhae измерялись с орбитального аппарата "Марс-5" по эквивалентным ширинам полос СO 2 ; результаты хорошо согласуются с прямыми измерениями.

На орбитальных аппаратах "Марс-4" и "Марс-5" работали следующие приборы для исследования планеты: 1) аппаратура для экспериментов по радиопросвечиванию атмосферы на волнах 8 и 32 см; 2) радиотелескоп на длину волны 3,5 см; 3) инфракрасный радиометр на диапазон 8-26 мкм; 4) спектрофотометр с интерференционными фильтрами на диапазон 2- 5 мкм; 5) узкополосный фотометр с интерференционными фильтрами на полосы СO 2 около 2 мкм; 6) узкополосный интерференционно-поляризационный фотометр на полосу Н 2 O 1,38 мкм; 7) фототелевизионный комплекс; 8) фотометр с интерференционными фильтрами на диапазон 0,3-0,8 мкм; 9) два поляриметра, позволяющих измерять степень поляризации в девяти узких полосах от 0,35 до 0,8 мкм; 10) фотометр на полосу озона 2600 Ằ; 11) фотометр для измерения интенсивности рассеянного солнечного излучения в линии L α с длиной волны λ=1216 Ằ; 12) γ-спектрометр для измерения γ-излучения планеты и космического фона на трассе перелета.

Другая группа приборов, установленных па орбитальных аппаратах, исследовала поля и частицы в окрестностях планеты и на трассе перелета: 1) магнитометр ("Марс-4", "Марс-7"); 2) плазменные ловушки ("Марс-4", "Марс-7"); 3) многоканальный электростатический анализатор ("Марс-4", "Марс-5"); 4) датчики микрометеоритов ("Марс-6", "Марс-7"); 5) датчики космических лучей ("Марс-6", "Марс-7"). На "Марсе-7" проводился совместный советско-французский эксперимент по исследованию радиоизлучения Солнца в метровом диапазоне. Французские ученые принимали участие также в поляриметрическом эксперименте и в измерениях излучения Lα.

Приборы жестко связаны с АМС и их ориентирование в постоянном направлении при измерениях обеспечивалось системой солнечно-звездной ориентации АМС. Трассы измерений 23 февраля - 1 марта проходили через область Araxes и Claritas, южнее Solis Lacus, затем через Thaumasia, Mare Erythraeum и кончаются в Pyrrhae, где произвел посадку СА "Марс-6". Всего было проведено семь полноценных сеансов измерений и получены результаты для семи трасс.

Два эксперимента на АМС "Марс-5" были посвящены исследованию химического состава атмосферы Марса - измерение содержания водяного пара и озона. Данные по измерению содержания Н 2 O свидетельствуют: содержание Н 2 O в некоторых областях Марса достигает 80 мкм осажденной воды, т. е. значительно больше, чем наблюдалось в 1971-72 гг. (данные "Марс-3", "Маринер-9": 10 - 20 мкм); имеются значительные пространственные вариации - в областях, расположенных на расстоянии несколько сот км, содержание Н 2 О в атмосфере может различаться в два - три раза. Наиболее высокая влажность атмосферы наблюдалась западнее пересеченной местности в области Araxes. Второй эксперимент уверенно обнаружил небольшие количества озона в атмосфере - около 10-5 % по объему. Высота озонного слоя около 30 км. Этот результат имеет важное значение для понимания фотохимических процессов в атмосфере планеты.

Фотометр для регистрации рассеянного в верхней атмосфере солнечного излучения в линии Lα, установленный на АМС "Марс-5", был снабжен узкополосными фильтрами-кюветами, что позволило оценить не только интенсивность излучения, но и ширину линии. Температура термосферы Марса, определенная по ширине линии Lα, составляет около 300 °К.

В результате исследований атмсоферы планеты методами одночастотного и двухчастотного радиопросвечивания (АМС "Марс-4", "Марс-5", "Марс-6") обнаружена ночная ионосфера Марса с концентрацией электронов ~5-10 3 см~ 3 в главном максимуме, расположенном на высоте 110-130 км. Определен высотный профиль электронной концентрации. Полученные экспериментальные данные позволяют предположить также, что на высотах -200 км существует дополнительный максимум ионизации и что в интервале высот 0-80 км существует плазма с концентрацией заряженных частиц -10 3 см -3.

При радиозаходах станций "Марс-4" и "Марс-6" за планету проведено двухчастотное радиопросвечивание вечерней ионосферы Марса. Найденные профили электронной концентрации подтверждают наличие излома на высотах ~210 км, обнаруженного в 1971 г. во время полета спутника "Марс-2". Результаты измерений частот дециметрового и сантиметрового сигналов в четырех сеансах радиопросвечивания позволили с высокой точностью определить высотные профили температуры и давления в тропосфере Марса в точках касания поверхности радиолучом. В интервале высот 0-20 км температурный градиент оказался равным ~3° км -1, высота однородной атмосферы 7+10 км. Результаты определения давления и температуры на поверхности Марса в точках касания с координатами λ° долготы и φ° широты приведены в таблице 3.

Таблица 3
АМС λ, град φ, град ρ, мбар Т °К
"Марс-4" заход
"Марс-4" выход
"Марс-5" выход
"Марс-6" заход
17
236
214
14
- 52
-9
38
-35
4,4+0,4
4,1+0,3
4,7+1,9
5,2+1,3
183+10
205+10
174+45
182+35

При заходе станции "Марс-4" температура у поверхности оказалась ниже (183 °К), чем при выходе (205 °К), хотя заход произошел над освещенной Солнцем стороной Марса, а выход - над ночной. По-видимому, это вызвано тем, что при выходе просвечивалась область вблизи экватора, а при заходе - область в более высоких и холодных широтах.

Большая серия экспериментов посвящена исследованиям поверхности Марса. Проводилось фотографирование планеты с помощью фототелевизионных устройств различного типа. Имеется около 60 фотографий (см. рис. 8, 9), полученных на АМС "Марс-4", "Марс-5", многие из них очень высокого качества. Они охватывают район, который фотографировал американский космический аппарат "Маринер-9" в период пылевой бури и не смог обеспечить высокое качество съемки. Использовались две камеры: короткофокусная с разрешением около 1 км вблизи перицентра и длиннофокусная с разрешением около 100 м. Кроме того, были получены изображения с помощью сканирующих фотоэлектрических фотометров. Полученные фотографии изучались геологами, а также производился их фотограмметрический анализ. На некоторых фотографиях имеются следы водной эрозии (см. рис. 9), возраст которых осторожно оценивается величиной меньше одного миллиарда лет. Это является независимым подкреплением гипотезы о колебаниях плотности марсианской атмосферы.

С борта АМС "Марс-5" были проведены радиоастрономические измерения яркостной температуры Марса в двух поляризациях. Обработка этих измерений позволила оценить электрические и тепловые свойства материала подповерхностного слоя планеты. Исследованный в 1974 г. район Марса (от 35 °S, 140 °W до 5 °N, 340 °W) оказался более однородным по своим электрическим и тепловым свойствам, чем области, измеренные с борта АМС "Марс-3" в 1971-72 гг. Средняя диэлектрическая проницаемость e = 3,1 + 0,3 и плотность ρ ~ 1,5 г/см 3 .

Инфракрасный (ИК) радиометр на АМС "Марс-5" измерял температуру поверхности. Максимальные зарегистрированные температуры составляют 272 °К и относятся к 13 h 10 m местного времени (район Thaumasia). В зоне терминатора температура падает до 230 °К, а в конце трассы при 21 h 00 m местного времени до 200 °К. Измерения с ИК-радиометром показывают, что тепловая инерция грунта находится в диапазоне 0,004-0,008 кал-град-1 см-2 сек-1/2. Отсюда можно оценить характерную величину размеров зерен грунта - от 0,1 до 0,5 мм. С другой стороны, фотометрические и поляриметрические измерения показывают, что эти зерна имеют микроструктуру более мелкого масштаба (порядка микрона).

Состав грунта и его структура определяют отражательную способность планеты в диапазоне от 0,3 до 4 мкм. Длинноволновый участок этого интервала исследовался с помощью инфракрасного спектрометра. Получено несколько сотен спектров в интервале от 2 до 5 мкм. Наиболее характерной их деталью является присутствие полосы кристаллизованной воды около 3,2 мкм. Совокупность спектроскопических, фотометрических и поляризационных свойств марсианского грунта согласуется с предположением о силикатном составе (окисленный базальт) с небольшой примесью гетита.

Специальный прибор - СO 2 альтиметр - измерял эквивалентные ширины полосы СO 2 ок. 2 мкм. По ним определялись профили давлений и высот на трассах измерений. В западной части трасс находится высокий район с характерной величиной давления 3-4 мбар, на востоке 5-6 мбар. Трассы пересекают два гребня высотой до 8-10 км над референтным уровнем (6,1 мбар).

Гамма-спектрометр на "Марсе-5" позволил получить спектры гамма-излучения марсианских пород, которые дают представление об их характерном составе.

С помощью АМС "Марс-5" были продолжены исследования магнитного поля на вечерней и ночной стороне планеты. Эти исследования позволили установить, что в окрестности планеты Марс образуется ударный фронт. За ударным фронтом наблюдается характерная переходная область, где наблюдается усиленное флуктуирующее поле со стороны планеты. Переходная область ограничена более регулярным и возрастающим при приближении к перицентру магнитным полем. Это поле на высоте 1100 км составляет около 30 гамм. При удалении станции от перицентра наблюдалось последовательное пересечение характерных областей в обратном порядке. Совокупность данных о величине и топологии магнитного поля, положении ударного фронта и интенсивности солнечного ветра может быть объяснена наиболее естественным образом при допущении, что планета Марс обладает собственным магнитным полем с моментом М = 2,47·10 22 гаусс·см-3 и напряженностью поля на экваторе Н = 64 гамм. На высотах полета спутника поле деформировано действием солнечного ветра. Северный полюс марсианского диполя находится в северном полушарии, а ось диполя наклонена к оси вращения Марса на угол 15-20°.

Анализ ионных и электронных энергетических спектров, полученных с помощью приборов АМС "Марс-5", показал, что вблизи планеты существуют три пересекаемых спутником зоны с существенно различными свойствами плазмы. В первой зоне регистрируются спектры, соответствующие невозмущенному солнечному ветру, а во второй зоне - переходной области за фронтом ударной волны. Третья плазменная область лежит внутри шлейфа магнитосферы Марса и в некоторых отношениях сходна с так называемым плазменным слоем в шлейфе земной магнитосферы.

Измерения кинетических параметров плазмы с помощью многоканального электростатического анализатора АМС "Марс-5" позволили выявить отклонения от газодинамической модели обтекания солнечным ветром планеты Марс. Эти отклонения наблюдались в профиле скорости и температуры потока, обтекающего препятствие. Данные АМС "Марс-5" подтвердили результаты АМС "Марс-2", "Марс-3" о том, что в большинстве случаев ударная волна наблюдается на расстояниях, соответствующих небольшой (~400 км) эффективной высоте препятствия, хотя в отдельных случаях ударная волна расположена на значительно больших расстояниях.

Л. Лебедев.

прим. к сетевой редакции Хотя дальнейшие исследования показали, что аргон действительно является одной из важных составляющих марсианской атмосферы (1,5%, что на несколько порядков больше, чем в атмосферах Земли или Венеры), конкретная оценка завысила его концентрацию на порядок.

БСЭ 1974

АМС "Марс". 21 июля в 22 час 31 мин, 25 июля в 21 час 56 мин, 5 августа в 20 час 46 мин, 9 августа в 20 час к планете Марс были запущены автоматические межпланетные станции "Марс-4", "Марс-5", "Марс-6" и "Марс-7". Целью космического эксперимента являлось комплексное исследование Марса с орбиты его искусственного спутника, с пролетной траектории и непосредственно на планете. Для этого предусматривалось создание искусственного спутника Марса и доставка на его поверхность посадочного аппарата. Станция "Марс-5" (рис. 4) по конструкции и назначению аналогична станции "Марс-4". Станции предназначались для проведения научных исследований с орбиты искусственного спутника Марса. Станция "Марс-7" по конструкции и назначению аналогична станции "Марс-6". В соответствии с задачами эксперимента "Марс-6" и "Марс-7" несколько отличались по конструкции от станций "Марс-4" и "Марс-5". Конструкция станций "Марс-6" и "Марс-7" включала спускаемый аппарат (СА) (рис. 5). В районе его посадки предполагалось определить физические характеристики грунта, определить характер поверхностной породы, осуществить экспериментальную проверку возможности получения телевизионных изображений окружающей местности, а также провести ряд других научных исследований.


Рис. 4. Автоматическая межпланетная станция "Марс-5".

Рис. 5. Спускаемый аппарат
АМС "Марс-6"
.

Автоматические межпланетные станции были выведены на траекторию полета к планете Марс с промежуточной орбиты искусственного спутника Земли. На трассе перелета со станциями регулярно проводились сеансы радиосвязи, в ходе которых осуществлялись траекторные измерения, контроль состояния бортовых систем, коррекции траекторий движения и передача на Землю научной информации о физических характеристиках космического пространства.

Станция "Марс-4" приблизилась к планете 10 февраля 1974 г. Вследствие нарушения в работе одной из бортовых систем тормозная двигательная установка не включалась, и станция прошла около планеты на расстоянии 2200 км от ее поверхности. При этом с помощью фототелевизиоиного устройства были получены фотографии Марса. Станция "Марс-5" достигла окрестностей планеты 12 февраля 1974 г. В 18 час 45 мин была включена тормозная двигательная установка для выведения станции на орбиту спутника Марса. Все динамические операции на заключительном этане перелета выполнялись автономно с помощью бортовой системы астронавигации. В результате проведенного маневра станция "Марс-5" стала искусственным спутником планеты. На борту орбитальной станции находился ряд приборов для комплексного исследования атмосферы и поверхности планеты астрофизическими методами. Оптические оси всех приборов были ориентированы так, что они "видели" планету, когда станция проходила в зоне минимальных расстояний от нее (в районе перицентра). В ходе эксперимента были получены данные о рельефе поверхности, температуре, теплопроводности, структуре и составе грунта, химическом составе нижней атмосферы, структуре ее верхних слоев. Обнаружено, что содержание паров воды в атмосфере Марса над отдельными участками его поверхности достигает (по предварительной оценке) 60 мкм осажденной воды. Это в несколько раз превышает максимальные количества водяного пара, обнаруженные в 1972 г. фотометром станции "Марс-3". Значительные колебания влажности атмосферы вдоль трассы полета (по крайней мере в 5 раз) могут свидетельствовать о различной скорости выделения воды нз недр в разных районах планеты. Один из ультрафиолетовых фотометров впервые обнаружил на Марсе следы атмосферного озона. Самая внешняя часть атмосферы Марса состоит из атомарного водорода, рассеивающего солнечное излучение в линии с длиной волны 1216 Ằ. Ультрафиолетовый фотометр, регистрирующий яркость атмосферы в этой линии, показал, что температура водородной короны Марса, простирающейся до высоты ~20 000 км, составляет около 350 °К.

С помощью магнитометра зарегистрировано в ближайшей окрестности планеты магнитное поле, в 7- 10 раз превышающее межпланетное. Новые данные подтверждают результаты, полученные в 1972 г. с помощью станций "Марс-2" и "Марс-3" и свидетельствовавшие о наличии у Марса собственного магнитного поля дипольного характера величиной около 30 гамма.

В первой половине февраля 1973 г. станция "Марс-4" фотографировала Марс с пролетной траектории, а станция "Марс-5" - с орбиты искусственного спутника. Фотографирование производилось с помощью двух фототелевмзионных устройств, способных различать детали размером порядка 1 км и 100 м с расстояния около 2000 км. Кроме того, изображение более широкой полосы местности вдоль трасс полета получалось с помощью сканирующих оптико-механических приборов. Съемка широкоугольным аппаратом проводилась через светофильтры, с тем чтобы после синтеза негативов получились цветные изображения отдельных участков поверхности. Трассы съемок пролегали в южном полушарии и простирались с запада на восток на несколько тысяч километров, охватывая многие разнообразные по структуре области марсианской поверхности. На снимках отмечены следы интенсивной эрозии под

Рис. 6. Участок поверхности
Марса размером 100x100 км

(фотография получена
с борта AMС "Марс-5").

действием поверхностных динамических процессов. Широко представлены сильно эродированные плоскодонные кратеры со скоплениями на отдельных участках песчаных наносов. Извилистые трещины, каньоны, возможно, являются следами древних речных долин. На фотографиях видны как древние, так и сравнительно свежие геологические формации марсианской поверхности. На рис. 6 представлена западная часть марсианского кратера поперечником 150 км и глубиной порядка 3 км, хорошо видна впадина неправильной формы длиной 25 км. На рис. 7 виден кратер с плоским дном поперечником 25 км; вал кратера очень отчетлив, на нем расположен еще один небольшой кратер; на внутреннем склоне большого кратера просматриваются многочисленные радиальные ложбины.

АМС "Марс-6" и "Марс-7" достигли окресности планеты Марс соответственно 12 и 9 марта 1974 г. При подлете к планете станции "Марс-6" была проведена автономно с помощью бортовой системы астронавигации заключительная коррекция траектории ее движения и от станции отделился спускаемый аппарат (на расстоянии 48 000 км от планеты). В расчетное время включилась двигательная установка, обеспечившая перевод СА на траекторию встречи с Марсом. При этом сама станция продолжала полет по гелиоцентрической орбите с минимальным удалением от поверхности планеты около 1600 км. СА вошел в атмосферу Марса, и началось аэродинамическое торможение. По достижении определенных перегрузок была введена в действие парашютная система.

Рис. 7. Кратер на Марсе
(фотография получена с борта
АМС "Марс-5").

С целью исследования параметров атмосферы на СА были установлены приборы для измерения давления, температуры, химического состава и датчики перегрузок. Информация с СА во время его снижения принималась станцией "Марс-6" и ретранслировалась на Землю. В непосредственной близости от поверхности Марса радиосвязь с СА прекратилась. Спускаемый аппарат станции "Марс-6" достиг поверхности планеты в районе с координатами 24° ю. ш. и 25° з. д.

Спускаемый аппарат станции "Марс-7" после отделения от станции, из-за нарушения в работе одной из бортовых систем, прошел около планеты на расстоянии 1300 км от ее поверхности.

На борту станций "Марс-6" и "Марс-7", кроме советской научной аппаратуры, были установлены приборы, изготовленные специалистами Франции. Ученые Франции приняли участие в экспериментах по измерению поляризации света, отраженного поверхностью и атмосферой планеты, по измерению интенсивности свечения резонансной линии водорода, исследованию <солнечного> ветра, космических лучей, а также в радиоастрономическом эксперименте по исследованию радиоизлучения Солнца в метровом диапазоне волн.

Hosted by uCoz